-	E (1 6 (15)		6	2.01	
1	Ext angle of octagon = $360 \div 8 (= 45)$		6	M1	for method to find the size of one exterior or one
· · ·	or Int angle of octagon $(8-2) \times 180 \div 8$ oe $(=135)$				interior angle of a regular octagon
	e.g. $10 + 2 \times 10 \times \sin 45$ (= $10 + 10\sqrt{2}$ or 24.1)			M1	method to find HE or AD
	or e.g. $\frac{10\sin 112.5}{\sin 22.5}$ (= 24.1)				22.5 comes from (180 – "135") ÷ 2
	$\sin 22.5$ (-24.1)				112.5 comes from "135" – "22.5"
	e.g. $10 \times (``10+10\sqrt{2}") = 100 + 100\sqrt{2} \text{ or } 241.4)$			M1	area ADEH
	or 10 × "24.1" (= 241.4)				
	e.g. $10 \times \sin 45^{\circ} (=5\sqrt{2} \text{ or } 7.07)$			M1	finds perpendicular height of triangle ACD (may
	or e.g. $\sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos^2 135^2}$ (= 18.4)				be found before, but must realise this is also height
					of triangle) or finds the length of AC
	or $\frac{10\sin^{-1}35^{-1}}{\sin 22.5}$ (= 18.4)				22.5 comes from $(180 - "135") \div 2$
	e.g. 0.5 × "24.1" × "7.07" (= 85.3)			M1	finds the area of triangle ACD
	or 0.5×10×"18.4"×sin112.5 (= 85.3)				112.5 comes from "135" – "22.5"
		327		A1	accept 326 – 327
	Alternative (splitting octagon into triangles and				
	subtracting trapezium and triangle)				
	Ext angle of octagon = $360 \div 8$ (= 45)		6	M1	for method to find the size of one exterior or one
	or Intangle of octagon $(8-2) \times 180 \div 8$ oe $(= 135)$				interior angle of a regular octagon or method to
	or one of 8 angles at centre = $360 \div 8 (= 45)$				find one angle at centre of octagon when split into
					8 equal triangles
	e.g. $0.5 \times 10 \times 5 \times \tan 67.5 \ (= 60.35)$			M1	Area of one triangle (one-eighth of octagon) or
	or $0.5 \times \left(\frac{10\sin 67.5}{\sin 45}\right)^2 \times \sin 45 (= 60.35)$				octagon
	or Octagon = 8 × "60.35" (= 482.8)				
	e.g. $10 + 2 \times 10 \times \sin 45^{\circ} (= 10 + 10\sqrt{2} = 24.14)$			M1	Method to find <i>HE</i>
	$0.5 \times (10 + 10 + 10\sqrt{2}) \times 5\sqrt{2}$ (=120.71)			M1	Method to find area of trapezium <i>HEGF</i>
	$0.5 \times 10 \times 10 \times \sin 135^{\circ} (= 35.35)$			M1	Method to find area of triangle ABC
		327		A1	accept 326 – 327
					Total 6 marks

2	$(10-2) \times 180$ oe (= 1440) or (6-2) × 180 oe (= 720)		4	M1	for a method to find the sum of the interior angles of a decagon or a hexagon
	$(1440^{\circ} - 148 - 2 \times 150 - 2 \times 168 - 2 \times 134 - 2 \times 125 \ (=138) \text{ or}$ $(1440^{\circ} - 1302 \ (= 138) \text{ or}$ $(720^{\circ} - 148 \div 2 - 150 - 168 - 134 - 125 \ (= 69) \text{ or}$ $(720^{\circ} - 651 \ (= 69)$			M1	Allow omission of one angle
	$360 - '138' \text{ or } 360 - 2 \times '69'$			M1	
		222		A1	
	Alternative method (exterior angles)				
	$\begin{array}{c} 360-2\times(180-125)-2\times(180-134)-2\times(180-168)-\\ 2\times(180-150)-(180-148)\\ \text{or}\\ 360-2\times55-2\times46-2\times12-2\times30-32 \end{array}$		4	M2	If not M2 then award M1 for at least 3 or (180 - 125), (180 - 134), (180 - 168), (180 - 150), (180 - 148) or at least 3 of 55, 46, 12, 30, 32
	180 + '42'			M1	· · · · · · · · · · · · · · · · · · ·
		222		A1	
					Total 4 marks

3	$180 - 2 \times 66 (= 48)$		3	M1	Could be marked on diagram
	(360 - "48") ÷ 2 (= 156)				-
	180 – "156" (= 24)				
	360 ÷ "24"			M1ft	Final stage of calculation
	Alt : $180 - 2 \times 66 \ (= 48)$			M1	Could be marked on diagram
	360 ÷ (0.5 × "48")			M1ft	Final stage of calculation
	Alt : $180 - 2 \times 66 \ (= 48)$			M1	Could be marked on diagram
	$(360 - ``48'') \div 2 (= 156)$				
	$\frac{180(n-2)}{100} = "156"$				
	n (2.1) $180(15-2)(15-2)$				
	"24" $n = 360 \text{ or } \frac{180(15-2)}{15} (= 156)$			M1ft	Final stage of calculation or embedded
					correct answer.
		15		A1	
					Total 3 marks

4	(a)	$(0.5 \times) 9.3 \times 14.7 \times \sin 106$ or		2	M1 for applying the area of a triangle formula using correct values
	()	$(9.3 \times \cos 16) \times 14.7$ or			(to find half of the area of the parallelogram) or
		$(9.3 \times \sin 74) \times 14.7$			for a correct method to find the area of the parallelogram
			131		A1 awrt 131
	(b)	$(GE^2 =) 9.3^2 + 14.7^2 - 2 \times 9.3 \times 14.7 \times \cos 106$		3	M1 for the correct use of the cosine rule
		377(.9) or 378 or 86.49 + 216.09 + 75.3 or			M1 (dep on M1) for the correct order of operations
		302.58 + 75.3			
			19.4		A1 for 19.4 – 19.5
					Total 5 marks

5	$(5-2) \times 180 \div 5 (= 108)$ or 360 ÷ 5 (= 72)		5	M1	for method to find an interior or exterior angle of a pentagon
	$(6-2) \times 180 \div 6 (= 120)$ or 360 ÷ 6 (= 60)			M1	for method to find an interior or exterior angle of a hexagon
	360 - 108 - 120 (= 132) or 60 + 72 (= 132) or (180 - '120') + (180 - '108')			M1	dep on M2 for a correct method to find angle <i>EDI</i> using correct figures
	360 - '72' - '60' - '132' (= 96)			M1	for a complete method to find angle <i>x</i>
		96		A1	dep on correct working
				Note:	Angles may be seen on diagram throughout
					Total 5 marks

6	eg $0.5 \times x \times x \times \sin 60 \left(= \frac{\sqrt{3}}{4} x^2 = 0.433x^2 \right)$ oe where $x = PQ$		4	M1	For expression for area of triangle [using $AB = x$ and $PQ = \frac{2}{3}x$ gives
	eg $0.5 \times 2n \times 2n \times \sin 60 \left(=\sqrt{3}n^2 = 1.732n^2\right)$ oe where $2n = PQ$				$\frac{\sqrt{3}}{9}x^2 = 0.192x^2$] (correct
	or use $0.5 \times b \times h$ where $h = \sqrt{x^2 - (0.5x)^2} (= \frac{\sqrt{3}}{2}x)$ oe				9 expression in 1 variable eg PQ)
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 \left(= \frac{27\sqrt{3}}{8}x^2 = 5.845x^2 \right)$ oe		-	M1	for expression for area of hexagon [using $AB = x$ and $PQ = \frac{2}{3}x$ gives
	eg 6 × 0.5 × 3 <i>n</i> × 3 <i>n</i> × sin60 $\left(=\frac{27\sqrt{3}}{2}n^2=23.382n^2\right)$ oe or				$\frac{3\sqrt{3}}{2}x^2 = 2.598x^2$
	eg $2(\frac{1}{2} \times 1.5x \times 1.5x \times \sin 120) + 1.5x \times AE$ where				(correct expression in 1 variable eg <i>AB</i>)
	$AE = \sqrt{(1.5x)^2 + (1.5x)^2 - 2 \times 1.5x \times 1.5x \times \cos 120}$				
	$\left(=\frac{27\sqrt{3}}{8}x^2=5.845x^2\right) \text{ or use of } 6 \times 0.5 \times b \times h, \text{ finding } h \text{ by Pythagoras}$				
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 - 0.5 \times x \times x \times \sin 60 = 72\sqrt{3}$ oe or			M1	for a correct equation for shaded
	$\left(\frac{27\sqrt{3}}{8} - \frac{\sqrt{3}}{4}\right)x^2 = 72\sqrt{3} \text{ or } (5.845 0.433)x^2 = 124.7 \text{ or}$				area (correct equation in 1 variable, eg PQ or x etc)
	eg $6 \times 0.5 \times 3n \times 3n \times \sin 60 - 0.5 \times 2n \times 2n \times \sin 60 = 72\sqrt{3}$ oe				
	$\left(\frac{27\sqrt{3}}{2} - \sqrt{3}\right)n^2 = 72\sqrt{3} \text{ or } (23.382 1.732)n^2 = 124.7$				
		4.8		A1	·

7	eg tan $BAP = \frac{2}{5}$ or		5	M1	for setting up a trig equation for angle <i>BAP</i>
	$\sin BAP = \frac{2}{\sqrt{5^2 + 2^2}}$ or $\frac{\sin BAP}{2} = \frac{\sin 90}{\sqrt{5^2 + 2^2}}$				
	$\cos BAP = \frac{5}{\sqrt{5^2 + 2^2}} \text{ or } \cos BAP = \frac{5^2 + (\sqrt{5^2 + 2^2})^2 - 2^2}{2 \times 5 \times \sqrt{29}}$				
	eg $(BAP =) \tan^{-1}\left(\frac{2}{5}\right) (= 21.8)$ or			M1	for a complete method to find angle BAP (= 21.8)
	$(BAP =)\sin^{-1}\left(\frac{2}{\sqrt{5^2 + 2^2}}\right)$ or $(BAP =)\sin^{-1}\left(\frac{2\sin 90}{\sqrt{5^2 + 2^2}}\right)$				[M2 for 90 $-\tan^{-1}\frac{5}{2}$ ie 90 -68.2]
	$(BAP =)\cos^{-1}\left(\frac{5}{\sqrt{5^2 + 2^2}}\right) \text{ or } BAP = \cos^{-1}\left(\frac{5^2 + (\sqrt{5^2 + 2^2})^2 - 2^2}{2 \times 5 \times \sqrt{5^2 + 2^2}}\right)$				
	eg (int angle =) $(6-2) \times 180 \div 6(=120)$			M1	Indep for a method to find the
	or (ext angle =) 360 ÷ 6(= 60)				size of one interior or one
					exterior angle in a regular hexagon – could be seen on
					diagram
	eg "120" – "21.8" or 180 – "60" – "21.8"			M1	for a complete method to find angle PAF where all values have
		98.2		A1	come from a correct method accept 98.1 – 98.3
					Total 5 marks

8	360 ÷ 8 (= 45) or 360 ÷ 5 (= 72) or 180 - (360 ÷ 8) (= 135) oe or 180 - (360 ÷ 5) (= 108) oe		4	M1 finding interior or exterior angle of octagon or pentagon Angles may be seen on diagram – but must be obtuse if interior and acute if exterior.
	⁽⁷²⁾ - ⁽⁴⁵⁾ (= 27) or ⁽¹³⁵⁾ - ⁽¹⁰⁸⁾ (= 27)			M1 (dep 1st M1) using a pair of interior or pair of exterior angles to find angle <i>IBC</i> Angle may be seen on diagram.
	$\frac{180-'27'}{2}$ (= 76.5)			M1
		76.5		A1
				Total 4 marks

9	$\frac{\frac{360}{10}}{\frac{10}{10}} (= 36) \text{ ext angle}$ or $\frac{(10-2) \times 180}{10} (= 144)$		4	M1	method to find interior or exterior angle. (angles may be seen on diagram)
	$x = "144" - 90 (= 54) \text{ or}$ $x = \frac{"540" - 3 \times "144"}{2} (=54) \text{ or}$ $x = 90 - "36" (=54)$ 54 on the diagram is insufficient – must see working			M1	method to find x (must show it is intended to be x) eg use of int angle -90° use of ext angle $+ x = 90^{\circ}$ use of pentagon <i>GHIJA</i> All figures in " " must come from correct working
	$BAD = CDA = GDE = DGF = \frac{360 - 2 \times "144"}{2} (= 36)$			M1	A correct method to find an angle of 36° within the shape (not exterior angle) or 36° shown in correct place in diagram
	There are other correct methods. Please check for correct working.	x = 54 $y = 54$		A1	dep on M3 to find each of x and y and the correct value of 54 for both from correct working
ALT	(DC) = ((144)) = 0 + ((26)) (-70)			1.01	Total 4 marks
ALT	$ADG = "144" - 2 \times "36" (= 72)$			M1	
	JA is parallel to GD			M1	
	DGA = DAG(y) [isosceles triangle]	1		M1	
	x = DGA = y	shown		A1	
	There are other correct methods.				Total 4 marks
	Please check for correct working.				

10	$SCD = 128^{\circ} \text{ or } BCS = 32^{\circ}$ or $TSC = 180 - 128 (= 52)$		4	M1	angles need to be identified or may be seen marked on the diagram	M2 for (<i>BCD</i> =) 128 + 32 (= 160) or (<i>DCV</i> =) 52 -
	eg (int $\angle =$)128+32(=160) or (ext $\angle =$)180-(128+32)(=20) or (ext $\angle =$)"52"-32(=20)			M1	(dep on previous M1) for method to find the size of one interior or exterior angle, may be seen marked on the diagram.	32 (= 20) (may be seen marked on the diagram). To award these marks 160 or 20 must be clearly used or identified as the interior or exterior angle.
	eg $180(n-2) =$ "160" <i>n</i> or $360 \div$ "20"]	M1	for setting up an equation for the angles or $360 \div 20$	ne sum of interior
	Working required	18		A1	dep on M2	
						Total 4 marks

11	$3 \times 180 (= 540) \text{ or} 360 - [(180 - 90) + (180 - 135) + (180 - 67) + (180 - 119)] (= 51) \text{ or} 360 - (90 + 45 + 113 + 61) (= 51)$		3	M1
	90 + 135 + 67 + 119 + $x = "540"$ oe 411 + $x = "540"$ oe or "540" - (90 + 135 + 67 + 119) or $3 \times 180 - (90 + 135 + 67 + 119)$ oe or 540 - 411 or 180 - "51" oe			M1
	Correct answer scores full marks (unless from obvious incorrect working)	129		Al
				Total 3 marks

12	eg (6 – 2) × 180 (= 720)				4	M1 for a method to find the sum of the interior angles for a horagon
	eg "720"-(90+95+149+104+57)(=225)					M1 for a method to find the missing angle in the hexagon
	eg $\frac{360}{"225"-180}$ or $\frac{360}{"45"}$ or $\frac{180(n-2)}{n} = 360 - "225"$ oe or $\frac{180(n-2)}{n} = "135"$					M1 for a complete method
i	n Working required	8				A1 cao dep on M2
						NB: the answer of 8 can be gained from assuming that <i>AB</i> splits reflex <i>GBC</i> into 2 equal angles – without gaining the first 2 method marks [M0M0 is awarded] Award SCB1 for the student who gains an answer of 8 from this assumption or trial and improvement or no method shown Total 4 marks
						Total 4 marks
13	(radius of large circle =) $\frac{4}{\cos 54}$ or $\frac{4}{\sin 36}$ or $\frac{8 \sin 54}{\sin 72}$ or $\sqrt{\frac{8^2}{2-2\cos 72}}$ (= 6.805) or (height of 1 triangle within pentagon =) 4tan54 (=5.505)) oe		6	M1	for a complete method to find the radius of the large circle or the perpendicular height of one triangle within the pentagon
	(area of large circle =) $\pi \times ("6.805")^2$ (= 145.489) oe or (area of sector =) $\frac{72}{360} \times \pi \times ("6.805")^2$ (= 29.097) oe			-	M1	for a complete method to find the area of the large circle or the area of a sector of the large circle
	(area of pentagon =) $5 \times \frac{1}{2} \times 8 \times 5.505$ " (= $80tan54 = 11$ or $10 \times \frac{1}{2} \times 4 \times 5.505$ " (= $80tan54 = 110.11$) or $5 \times \frac{1}{2} \times 6.805$ " × 6.805 " × $sin72$ (= 110.11) oe OR (area of one triangle =) $\frac{1}{2} \times 8 \times 5.505$ " (= 22.022) or $\frac{1}{2} \times 6.805$ " × 6.805 " × $sin72$ (= 22.022) or $\frac{1}{2} \times 6.805$ " × $8 \times sin54$ (= 22.022) oe	0.11)			M1	for a complete method to find the area of the pentagon OR the area of one triangle eg <i>OED</i> or equivalent
	"145.489"-"110.11"+ πr^2 ="110.11"- πr^2 oe or 5×("29.097"-"22.022") + πr^2 = 5×"22.022"- πr^2	oe			M1	for a correct equation for the radius of the smaller circle
<u>,</u>	$2\pi r^2 = 2 \times "110.11" - "145.489" (= 74.731)$ oe			-	M1	for a correct rearranged equation with the area of the circle the subject or better
	Correct answer scores full marks (unless from obvious inco working)	prrect 1	3.45		A1	accept 3.43 - 3.45
· · · ·						Total 6 marks

eg $DEK = \frac{360}{9}$ or 40 or interior angle $= \frac{(9-2) \times 180}{9}$ or 140 or $DFK = 140 \div 2 (= 70)$ or $FOK = \frac{2}{9} \times 360 (= 80)$ or $EDK = 180 - 0.5 \times 140 (=110)$ Angles marked correctly (any exterior or interior angle) gains this mark		3	M1	method to find interior or exterior angle or correct interior or exterior angle stated or shown correctly on diagram or for using 70° for <i>OFK</i> or 80° for <i>FOK</i> or 110 for <i>EDK</i> If a student has only found an interior or exterior angle and has clearly mixed up interior and exterior angles this mark cannot be awarded but can still award for any of the others angles stated
EDK = 110 and DEK = 40 or FOK = 80 and OFK = 70 or ODE = 70 and DEK = 40 or FED = 140 and EDK = 110 oe Correct answer scores full marks (unless from a basis)	30		M1 A1	For two correct angles that can lead directly to the answer in a single step (eg 180 – both angles or one angle minus the other)
 obvious incorrect working)				
				Total 3 marks